Positive Solution for Fractional q-Difference Boundary Value Problems with φ -Laplacian Operator

نویسندگان

  • WENGUI YANG
  • W. Yang
چکیده

In this paper, we investigate the existence of at least one positive solution for a class of fractional q-difference boundary value problems with φ -Laplacian operator. The arguments mainly rely on the upper and lower solutions method as well as the Schauder’s fixed point theorem. Nonlinear term may be singular at t = 0,1 or u = 0. Furthermore, two examples are presented to illustrate the main results. 2010 Mathematics Subject Classification: 39A13, 34B18, 34A08

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions to a class of q-fractional difference boundary value problems with φ-Laplacian operator

By virtue of the upper and lower solutions method, as well as the Schauder fixed point theorem, the existence of positive solutions to a class of q-fractional difference boundary value problems with φ-Laplacian operator is investigated. The conclusions here extend existing results. c ©2016 All rights reserved.

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Existence and uniqueness of positive and nondecreasing solutions for a class of fractional boundary value problems involving the p-Laplacian operator

In this article, we investigate the existence of a solution arising from the following fractional q-difference boundary value problem by using the p-Laplacian operator: Dq (φp(Dqy(t))) + f (t, y(t)) = 0 (0 < t < 1; 0 < γ < 1; 3 < δ < 4), y(0) = (Dqy)(0) = (D 2 qy)(0) = 0, a1(Dqy)(1) + a2(Dqy)(1) = 0, a1 + |a2| = 0, D0+y(t)|t=0 = 0. We make use of such a fractional q-difference boundary value pr...

متن کامل

Positive Solutions to Boundary-value Problems of P-laplacian Fractional Differential Equations with a Parameter in the Boundary

In this article, we consider the following boundary-value problem of nonlinear fractional differential equation with p-Laplacian operator D 0+(φp(D α 0+u(t))) + a(t)f(u) = 0, 0 < t < 1, u(0) = γu(ξ) + λ, φp(D α 0+u(0)) = (φp(D α 0+u(1))) ′ = (φp(D α 0+u(0))) ′′ = 0, where 0 < α 6 1, 2 < β 6 3 are real numbers, Dα 0+, D β 0+ are the standard Caputo fractional derivatives, φp(s) = |s|p−2s, p > 1,...

متن کامل

Anti-periodic Boundary Value Problems of φ-Laplacian Impulsive Differential Equations

This paper concerned with the existence of solutions of anti-periodic boundary value problems for impulsive differential equations with φ-Laplacian operator. Firstly, the definition a pair of coupled lower and upper solutions of the problem is introduced. Then, under the approach of coupled upper and lower solutions together with Nagumo condition, we prove that there exists at least one solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012